Haider H Dar

  • Research Assistant Professor

My research is focused on understanding and deciphering the mechanisms of lipid peroxidation triggered programmed cell death pathways (ferroptosis and necroptosis), and their regulation in the context of diseases or injury.  Decoding these mechanisms will lead to identification of new drug intervention targets and are crucial for the development of specific drugs and diagnostic procedures. One major focus is to explore ferroptosis in the context of host-pathogen interaction. For this, I am using Pseudomonas aeruginosa as a model to investigate the concept of “theft-ferroptosis” (pathogen induced ferroptosis) as a virulence mechanism particularly in immune compromised patients within hospital environment, in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) using redox lipidomics analysis.



2001 | Aligarh Muslim University, Aligarh, UP, India | Bachelor of Science | Chemistry



2003 | School of Biotechnology, University of Jammu, Jammu, J&K, India | Master of Science | Biotechnology

2011 | Institute of Microbial Technology/Jawaharlal Nehru University, New Delhi, India | Ph. D | Biochemistry and Molecular Biology



2011-2014 | Research Center, Hospital Maisonneuve- Rosemont (HMR), University of Montreal, Quebec, Canada. | Postdoctoral Fellow | Biochemistry and Cell Biology.

2014-2014 | McMaster University, Hamilton, Onterio, Canada | Visiting Fellow | Microbiology


2017-2020 | EOH 2310: Molecular Fundamentals

Selected Publications

H. H. Dar, et al., (2022). P. aeruginosa augments irradiation injury via 15-lipoxygenase–catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis.JCI Insight;7(4): e156013.https://doi.org/10.1172/jci.insight.156013 (PMID: 35041620).

A. M. Lamade, L. Wu,H. H. Dar, et al., (2022). Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death.Redox Biology;50:102232.https://doi.org/10.1016/j.redox.2022.102232.(PMID:35101798).

H. H. Dar, T. S. Anthonymuthu, P. A. Ponomareva et al., (2021). A new thiol- independent mechanism of epithelial host defense against Pseudononas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. (Redox Biology. 45, 102045.https://doi.org/10.1016/j.redox.2021.102045 (*Co-corresponding author). (PMID: 34167028).).

W. Y. Sun, V. A. Tyurin, I. H. Shrivastava, B. Liu, Y. J. Zhai, S. Korolev, A. Y. Abramov, P. R. Angelova, O. Beharier,H. H. Dar, et al., (2021). Phospholipase iPLA 2 � averts fer- roptosis by eliminating a redox lipid death signal.Nature Chemical Biology. 17, 465-476.(PMID:33542532).

T. S. Anthonymuthu, Y. Y. Tyurina, W. Y. Sun, K. Mikulska-Ruminska, I. H. Shrivastava, V. A. Tyurin, F. B. Cinemre,H. H. Daret al., (2021) Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of perox- idized ETE-PE, and protects against ferroptosis.Redox Biology.Jan;38:101744. (PMID: 33126055).

J. Zhao,H. H. Dar, Y. Deng, C. M. St Croix, Z. Li, Y. Minami et al., (2020). PEBP1 acts as a Rheostat between Pro-survival Autophagy and Ferroptotic Death in Asthmatic Epithelial Cells.Proc Natl Acad Sci U S A. 17(25):14376-14385. (PMID:32513718).

A. Kapralov*, Q. Yang*,H. H. Dar*, et al., (2020). Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death.Nature Chemical Biology.16:278-290.(PMID:32080625) (* Equal contribution).

T. Anthonymuthu, E. M. Kenny, I. Shrivastava, Y. Y. Tyurina, Z. E. Hier, H.C. Ting,H. H. Dar, et al., (2018). Empowerment of 15-Lipoxygenase Catalytic Competence in Selective Oxidation of Membrane ETE-PE to Ferroptotic Death Signals, HpETE-PE.J. Am. Chem. Soc. 140 (51):17835-17839. (PMID:30525572).

H. H. Dar, Y. Y. Tyurina, K. Mikulska-Ruminska, I. Shrivastava, H.C. Ting, et al., (2018). Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium.Journal of Clinical Investigation. 128 (10):4639-4653. (PMID:30198910).

S. E. Wenzel, Y. Y. Tyurina, J. Zhao, C. M. St. Croix,H. H. Dar, et al., (2017). PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death SignalsCell. 171(3):628-641. (PMID:29053969).

C. F. Chiu,H. H. Dar, A. A. Kapralov, R. A. S. Robinson, V. E. Kagan and A. Star (2017). Nano emitters and innate immunity: the role of surfactants in myeloperoxidase-catalyzed ox- idation of pristine single-walled carbon nanotubes.Nanoscale. 9 (18):5948-5956. (PMID:28440832).

V. E. Kagan, G. Mao, F. Qu, J. P. F. Angeli, S. Doll, C. St. Croix,H. H. Dar, et al., (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nature Chemical Biology. 13(1):81-90. (PMID:27842066).

V. E. Kagan, J. Jiang, Z. Huang, Y. Y. Tyurina, C. Desbourdes, C. Cottet-Rousselle,H. H. Dar, et al., (2016). NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy.Cell Death Differ. 23(7):1140-51. (PMID:26742431).

K. Balasubramanian, A. Maeda, J. S. Lee, D. Mohammadyani,H. H. Dar, et al (2015). Di- chotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phago- cytosis and attenuation of innate immunity.Science Signaling.Sep 22;8(395): ra95. (PMID:26396268).

N. Mashtalir, S. Daou, N. Sen, J. Gagnon, I. Hammon-Martel,H. H. Dar, M. Therrien and El B. Affar (2014). Autodeubiquitination protects the tumor suppressor BAP1 from cyto- plasmic sequestration mediated by atypical Ubiquitin ligase UBE2O.Mol Cell. May 8;54(3):392-406. (PMID:24703950).

H. H. Dar, D. Prasad, G. C. Varshney and P. K. Chakraborti (2011). Secretory Nucleoside diphosphate Kinase from both the Intra- and Extra- cellular Pathogenic Bacteria are function- ally indistinguishable.Microbioloby. 157, 3024-35. (PMID:21816881).

H. H. Darand P. K. Chakraborti (2010). Intermolecular phosphotransfer is crucial for efficient catalytic activity of Nucleoside diphosphate kinase.Biochem J. 430, 539-549. (PMID:20575762).

R. Saxena, P. Kanudia, M. Datt,H. H. Dar, S. Karthikeyan, B. Singh and P. K. Chakraborti (2008). Three consecutive arginine’s are important for mycobacterial peptide deformylase enzyme activity.J. Biol. Chem. 283, 23754-23764. (PMID:18574247).